This article was downloaded by: [University of Haifa Library]

On: 16 August 2012, At: 09:03 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Physical Properties of Vanadium Oxide Bronzes β - $A_{0.33}V_2O_5$ (A = Ca and Sr)

Masahiko Isobe ^a & Yutaka Ueda ^a

^a Materials Design and Characterization Laboratory, Institute for Solid State Physics, The University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo, 106-8666, Japan

Version of record first published: 27 Oct 2006

To cite this article: Masahiko Isobe & Yutaka Ueda (2000): Physical Properties of Vanadium Oxide Bronzes β -A_{0.33}V₂O₅ (A = Ca and Sr), Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 341:2, 271-276

To link to this article: http://dx.doi.org/10.1080/10587250008026152

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan,

sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Physical Properties of Vanadium Oxide Bronzes β - $A_{0.33}$ V₂O₅ (A = Ca and Sr)

MASAHIKO ISOBE and YUTAKA UEDA

Materials Design and Characterization Laboratory, Institute for Solid State Physics, The University of Tokyo, Roppongi 7–22–1, Minato-ku, Tokyo 106–8666, Japan

(In final form June 24, 1999)

The vanadium bronzes, β - $A_{0.33}V_2O_5$ (A= Ca and Sr) have been synthesized, and their electromagnetic properties investigated. They show phase transitions at 150K and 170K, respectively, accompanying with anomalies in the magnetic susceptibility and resistivity curves. These transitions are of charge order type. Below the transition temperature the magnetic susceptibility showed low dimensional behavior in both compounds, especially spin gap behavior in Sr_{0.33}V₂O₅. Such behavior is closely related to the crystal structure characteristic of the vanadium β -bronzes and a manner of ordering for magnetic V⁴⁺ ions at the transition.

Keywords: vanadium oxide bronzes; magnetic susceptibility; electric conductivity; phase transition

INTRODUCTION

The vanadate family of AV_2O_5 (A = Li, Na, Cs, Mg and Ca) has demonstrated a variety of low dimensional quantum spin phenomena of interests. We first found a spin-Peierls-like transition in $NaV_2O_5^{[1]}$. The discovery of this anomalous transition triggered off extensive studies on $NaV_2O_5^{[2-5]}$. At present there is a general consensus that NaV_2O_5 is converted from a quarter filled ladder to a state with charge order and spin gap in the transition. However, the mechanism of the transition has been an open question. In order to understand such a transition, it should be needed to search for other

compounds which show a similar transition and investigate their structural and physical properties. Very recently, Yamada and Ueda have studied structural and electromagnetic properties of β - A_x V₂O₅ (A= Li, Na, Ag and Cu) in detail using single crystals, and they reported a transition accompanying with a charge order and a long range magnetic order as a ground state in β - $A_{0.33}$ V₂O₅ (A= Na and Ag)^[6].

The monoclinic β -phase has a characteristic V_2O_5 framework formed by edge/corner shearing VO_5 and VO_6 , as shown in Fig. 1(a). There are three different sites for vanadium atoms: V1, V2 and V3. The V_2O_5 framework consists of three kinds of infinite double chains along the *b*-axis, as shown in Fig. 1(b). The V1 sites have six-fold, octahedral coordination and form a

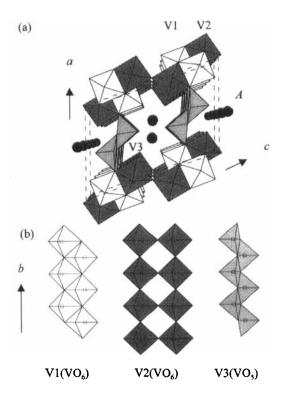


FIGURE 1 (a) Crystal structure of β - $A_{0.33}$ V₂O₅ projected on the a-c plane. (b) The three types of V-chains running parallel to the b-axis.

zigzag chain by sharing the edges of VO6 octahedra. The V2 sites with similar octahedral coordination form a ladder chain by sharing corners, and the V3 sites which have 5-fold square pyramidal coordination form a zigzag chain A cations are located at the sites in the tunnel formed by by sharing edges. the V₂O₅ framework. There are two equivalent sites for A, but two A sites at the same height along the b axis can not be occupied simultaneously. Therefore, the stoichiometric composition can be expressed as $A_{1/3}V_2O_5$, that is, AV6015.

The β compounds with divalent A cations such as Ca^{2+} and Sr^{2+} were first prepared by Bouloux et al^[7]. However, No report has been published on their electromagnetic properties up to now. We have synthesized powder samples of β - $A_{0.33}$ V₂O₅ (A= Ca and Sr) and investigated their electric and magnetic properties. We observed similar transitions accompanying charge order and low dimensional behavior in the magnetic susceptibility below the transition, especially spin gap behavior in β -Sr_{0.33}V₂O₅. We will report the results in this paper and compare the physical properties of $\beta - A_{0.33}V_2O_5$ (A= Ca and Sr) with those of β - $A_{0.33}$ V_2 O_5 (A = Na and Ag).

EXPERIMENTAL

Powder samples of β -Ca_{0.33}V₂O₅ (β -Sr_{0.33}V₂O₅) were prepared by a solid state reaction of mixtures with an appropriate molar ratio of Ca₂V₂O₇ (Sr₂V₂O₇), V₂O₃ and V₂O₅. The weighed mixtures were pressed into pellets and heated at 650°C in an evacuated silica tube for several days with some intermediate grindings. Samples thus prepared were identified by X-ray powder diffraction (XRD) to be a single phase of the β structure. Magnetic susceptibilities were measured using a Quantum Design SQUID magnetometer. Electrical resistivities s were measured by an ordinary four-probe method.

RESULTS AND DISCUSSION

By XRD, we observed a superstructure with a lattice modulation vector $\mathbf{q} = (0, 0)$ 1/2, 0) at room temperature in $\beta A_{0.33}V_2O_5$ (A = Ca and Sr). This means doubling of the unit cell along the b axis. Such a superstructure was also observed in $\beta - A_{0.33}V_2O_5$ (A = Na and Ag) below room temperature and was caused from ordering of A cations along the b axis, that is, formation of A-chains where A cations and vacancies alternate with each other. The ordering of A cations has already been found in β - $A_{0.33}$ V₂O₅ (A = Ca and Sr) at room temperature.

The magnetic susceptibility of Sr_{0.33}V₂O₅ showed a slight jump at around 170 K as seen in Fig. 2(a), which suggests some kind of a phase transition. Above the transition temperature (T_i) the magnetic susceptibility was almost independent of temperature, and below T_i it showed low dimensional behavior. The magnetic susceptibility of $Sr_{0.33}V_2O_5$ had a maximum around 50 K, decreased with lowering temperature and showed upturn caused by impurities or defects at low temperature. A small value of the magnetic susceptibility that is comparable to that for vanadium oxides with spin-singlet V4+-V4+ pairs was obtained by subtracting this Curie term from the raw data of the magnetic susceptibility. No anomaly evidencing a magnetic order was observed. At the transition the lattice parameters showed a discontinus change, which suggests a first order transition. Moreover, the resistvity of Sr_{0.33}V₂O₅ measured by using sintered powder samples also changed from a semiconductive one above T_i to a much less conductive one below T_i . An NMR study has revealed that above T_i there exists only one kind of a V site in

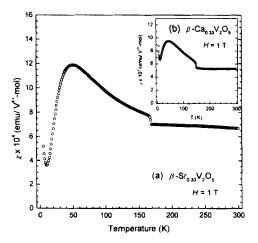


FIGURE 2 Temperature dependence of magnetic susceptibilities of β - $A_{0.33}$ V,O, (A = Ca and Sr).

the electronic state, while below T, there exist two kinds of V sites which can be assigned to magnetic V⁴⁺ and nonmagnetic V^{5+ [8]}. This strongly suggests a charge order transition or a charge disproportion at T_i .

Ca_{0.33}V₂O₅ also showed a similar phase transition at around 150 K and low dimensional behavior of the magnetic susceptibility below T_p , as shown in Fig. 2(b). The value of magnetic susceptibility at lower temperature is rather large in Ca_{0.33}V₂O₅ compared with that in S_{0.33}V₂O₅, and there is no anomaly evidencing any magnetic order. The resistivity and lattice parameters of $Ca_{0.33}V_2O_5$ showed the behavior similar to those of $S_{0.33}V_2O_5$.

We summarize the results in Table I. The β compounds with both monovalent and divalent A cations show similar charge order transitions but the behavior below T_t or the ground state is different between the A^+ and A^{2+} The A^{2+} compounds show low dimensional behavior without compounds. any magnetic order. On the other hand, the A^+ compounds show magnetic order at low temperature although they have a smaller amount of magnetic V4+ ions in comparison with the A^{2+} compounds.

The ratio of magnetic V^{4+} ions to nonmagnetic V^{5+} ions is 1 to 5 in the A^{+} compounds and 1 to 2 (2 to 4) for the A^{2+} compounds. This difference is very suggestive when we consider the differences of the magnetic properties of both compounds in connection with their crystal structures. If the magnetic V4+ ions prefer only one of the three V sites, they can perfectly occupy one of the three chains in the case of A^{2+} compounds but they do only half of it in the A^{+} Therefore the low dimensional character is expected to become more remarkable in the A^{2+} compounds rather than in the A^{+} compounds.

The comparison of the transition temperature (T_i) and ground state in β - $A_{0.33}$ V_2 O_5 (A= Na, Ag, Ca and Sr)

A	T_{ι}	ground state
Na (1+) ^[6]	~ 135 K	antiferro. $(T_N \sim 24 \text{ K})$
Ag $(1+)^{[6]}$	~ 90 K	antiferro. $(T_N \sim 27 \text{ K})$
Ca (2+)	~ 150 K	para. (gapless)
Sr (2+)	~ 170 K	para. (spin gap)

Actually, as described above, the Ca and Sr compounds show the low dimensional magnetic behavior below T_i ; especially the Sr compound shows the spin gap behavior. Among one-dimensional magnetic systems, it is well known that a two-leg ladder system has a spin gap as a ground state. Then a possible scenario is as follows: A phase transition accompanying a charge order or charge disproportion occurs at T_i in the β -phase. At the transition, the magnetic V^{4+} ions preferably precipitate into the V2 sites in the Sr compound, and as a result the geometry of the two-leg ladder responsible for the spin gap behavior is realized. On the other hand, the magnetic V^{4+} ions occupy other sites, V1 or V3 in the Ca-compound, forming a 1-D magnetic chain, which shows neither magnetic order nor spin gap. In contrast, the magnetic chain forms insufficiently in the A^+ compounds, and a long-range magnetic order appears at low temperature.

Further investigations such as neutron scattering should be needed in order to confirm this idea. The transition in the β -phase should be compared with that in NaV₂O₅. In both compound the electronic state is uniform above T_i , and below T_i there exists clear charge differentiation. The transition is of second order in NaV₂O₅ while in the β -phase it is of first order.

CONCULUTION

The vanadium bronzes, $\beta - A_{0.33} V_2 O_5$ (A = Ca and Sr) showed the phase transitions accompanying the charge order and low dimensional behavior in the magnetic susceptibility below the transition temperature, especially the spin gap behavior in $Sr_{0.33} V_2 O_5$. Such behavior is closely related to the crystal structures characteristic of the vanadium β -bronzes and a manner of ordering for magnetic V^{4+} ions at the transition.

References

- [1] M. Isobe and Y. Ueda, J. Phys. Soc. Jpn., 65, 1178 (1996).
- [2] Y. Fujii et al., J. Phys. Soc. Jpn., 66, 326 (1997).
- [3] A. N. Vasil'ev et al., Phys. Rev. Lett., 81, 1949 (1998).
- [4] T. Ohama H. Yasuoka, M. Isobe, and Y. Ueda, Phys. Rev. B, 59, 3299 (1999).
- [5] H. Seo and H. Fukuyama, J. Phys. Soc. Jpn., 67, 2602 (1998).
- [6] H. Yamada and Y. Ueda, J. Phys. Soc. Jpn., to be published.
- [7] J. C. Bouloux, J. Galy, and P. Hagenmuller, Rev. Chim. Miner., 11, 48 (1974).
- [8] H. Yasuoka et al., private communication.